完美者(wmzhe.com)网站以软件下载为基础,改版后的网站对功能性板块进行扩充,以期能够解决用户在软件使用过程中遇见的所有问题。网站新增了“软件百科”、“锦囊妙技”等频道,可以更好地对用户的软件使用全周期进行更加专业地服务。
Maple是一种数理推导软件,特色是数学和分析,符号计算功能非常强大,支持无限精度数值计算,被广泛地应用于科学、工程和教育等领域。Maple软件可以说是现代数学家、工程师、科学家必备的科学计算工具。
电脑使用的文字处理程序非常多,从简单的只能编辑纯文字,到复杂的可编辑排版的都有,而Maple的特点则是可以对文件建立阶层式的结构,就像书籍章节段落的安排一样,让文件看起来阶层分明,有条不紊。在Maple视窗的左侧便是阶层的树状图,使用者可以加入无限个节点与次节点,代表上下的阶层分类。右侧则是显示该阶层的内容,支持完整的格式化文字,如字型、尺寸、颜色、对齐等功能,并可插入图片或物件,或者连结其他的文件。亦支持鼠标拖、放的功能。
"锦囊妙技"栏目是聚合全网软件使用的技巧或者软件使用过程中各种问题的解答类文章,栏目设立伊始,小编欢迎各路软件大神朋友们踊跃投稿,在完美者平台分享大家的独门技巧。
本站文章素材来源于网络,大部分文章作者名称佚失,为了更利于用户阅读和使用,根据需要进行了重新排版和部分改编,本站收录文章只是以帮助用户解决实际问题为目的,如有版权问题请联系小编修改或删除,谢谢合作。
软件大小:14.56 MB
maple的中文意思:枫树636f70793231313335323631343130323136353331333431353962一、词汇解析maple英['meɪp(ə)l];美['mepl]n. 枫树;淡棕色例:What's the quickest way to Maple Street? 从这里尽快赶到枫树街该怎么走?例:Then, deliberately, he pours maple syrup into his oatmeal. 然后,他又刻意往燕麦片粥里倒进枫糖浆。二、关于maple的短语1、maple leaf n. 枫叶2、maple syrup n. 枫蜜3、maple tree 枫树4、red maple 红花槭5、sugar maple n. 糖枫扩展资料近义词1、birch英[bɜːtʃ];美[bɝtʃ]n. 桦木;桦树;桦条例:It trembles as birch limbs webbing the air. 它颤抖着,如桦树枝在网罗空气。2、peach英[piːtʃ];美[pitʃ]n. 桃子;桃树adj. 桃色的例:How do you find peach of mind in this world? 你如何找到桃的心态在这个世界上?
《Maple 指令》7.0版本第1章 章数1.1 复数Re,Im - 返回32313133353236313431303231363533e78988e69d8331333339666666复数型表达式的实部/虚部abs -绝对值函数argument - 复数的幅角函数conjugate - 返回共轭复数csgn - 实数和复数表达式的符号函数signum - 实数和复数表达式的sign 函数51.2 MAPLE 常数已知的变量名称指数常数(以自然对数为底)I - x^2 = -1 的根infinity 无穷大1.3 整数函数! - 阶乘函数irem, iquo - 整数的余数/商isprime - 素数测试isqrfree - 无整数平方的因数分解max, min - 数的最大值/最小值mod, modp, mods - 计算对 m 的整数模rand - 随机数生成器randomize - 重置随机数生成器1.4 素数Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第 i 个素数nextprime, prevprime - 确定下一个最大/最小素数1.5 数的进制转换convert/base - 基数之间的转换convert/binary - 转换为二进制形式convert/decimal - 转换为 10 进制convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数convert/hex - 转换为十六进制形式convert/metric - 转换为公制单位convert/octal - 转换为八进制形式1.6 数的类型检查type - 数的类型检查函数第2章 初等数学2.1 初等函数proct - 确定乘积求和不确定乘积exp - 指数函数sum - 确定求和不确定求和sqrt - 计算平方根算术运算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函数arcsin, arcsinh, . - 反三角函数/反双曲函数sin, sinh, . - 三角函数/双曲函数2.3 LOGARITHMS 函数dilog - Dilogarithm 函数ln, log, log10 - 自然对数/一般对数,常用对数2.4 类型转换convert/`+`,convert/`*` - 转换为求和/乘积convert/hypergeom - 将求和转换为超越函数convert/degrees - 将弧度转换为度convert/expsincos - 将trig 函数转换为exp, sin, cosconvert/Ei - 转换为指数积分convert/exp - 将trig 函数转换为指数函数convert/ln - 将arctrig 转换为对数函数polar - 转换为极坐标形式convert/radians - 将度转换为弧度convert/sincos - 将trig 函数转换为sin, cos, sinh, coshconvert/tan - 将trig 函数转换为tanconvert/trig - 将指数函数转换为三角函数和双曲函数第3章 求值3.1 假设功能3.2 求值Eval - 对一个表达式求值eval - 求值evala - 在代数数(或者函数)域求值evalb - 按照一个布尔表达式求值evalc - 在复数域上符号求值evalf - 使用浮点算法求值evalhf - 用硬件浮点数算法对表达式求值evalm - 对矩阵表达式求值evaln - 求值到一个名称evalr, shake - 用区间算法求表达式的值和计算范围evalrC - 用复数区间算法对表达式求值value - 求值的惰性函数第4章 求根,解方程4.1 数值解fsolve - 利用浮点数算法求解solve/floats - 包含浮点数的表达式4.2 最优化extrema - 寻找一个表达式的相对极值minimize, maximize - 计算最小值/最大值maxnorm - 一个多项式无穷大范数4.3 求根allvalues -计算含有RootOfs的表达式的所有可能值isqrt, iroot - 整数的平方根/第n 次根realroot - 一个多项式的实数根的隔离区间root - 一个代数表达式的第n 阶根RootOf - 方程根的表示surd - 非主根函数roots - 一个多项式对一个变量的精确根turm, sturmseq - 多项式在区间上的实数根数和实根序列4.4 解方程eliminate - 消去一个方程组中的某些变量isolve - 求解方程的整数解solvefor - 求解一个方程组的一个或者多个变量isolate - 隔离一个方程左边的一个子表达式singular - 寻找一个表达式的极点solve/identity - 求解包含属性的表达式solve/ineqs - 求解不等式solve/linear - 求解线性方程组solve/radical - 求解含有未知量根式的方程solve/scalar - 标量情况(单变量和方程)solve/series - 求解含有一般级数的方程solve/system - 解方程组或不等式组第5章 操作表达式5.1 处理表达式Norm - 代数数 (或者函数) 的标准型Power - 惰性幂函数Powmod -带余数的惰性幂函数Primfield - 代数域的原始元素Trace - 求一个代数数或者函数的迹charfcn -表达式和集合的特征函数Indets - 找一个表达式的变元invfunc - 函数表的逆powmod - 带余数的幂函数Risie - 计算一个表达式的代数余combine -表达式合并(对tan,cot不好用)expand -表达式展开Expand - 展开表达式的惰性形式expandoff/expandon - 抑制/不抑制函数展开5.2 因式分解Afactor - 绝对因式分解的惰性形式Afactors - 绝对因式分解分解项列表的惰性形式Berlekamp - 因式分解的Berlekamp 显式度factor - 多元的多项式的因式分解factors - 多元多项式的因式分解列表Factor - 函数factor 的惰性形式Factors - 函数factors 的惰性形式polytools[splits] - 多项式的完全因式分解第6章 化简6.1 表达式化简118simplify - 给一个表达式实施化简规则simplify/@ - 利用运算符化简表达式simplify/Ei - 利用指数积分化简表达式simplify/GAMMA - 利用GAMMA 函数进行化简simplify/RootOf - 用RootOf 函数化简表达式simplify/wronskian - 化简含wronskian标识符的表达式simplify/hypergeom - 化简超越函数表达式simplify/ln - 化简含有对数的表达式simplify/piecewise - 化简分段函数表达式simplify/polar - 化简含有极坐标形式的复数型表达式simplify/power - 化简含幂次的表达式simplify/radical - 化简含有根式的表达式simplify/rtable - 化简rtable表达式simplify/siderels - 使用关系式进行化简simplify/sqrt - 根式化简simplify/trig - 化简trig 函数表达式simplify/zero - 化简含嵌入型实数和虚数的复数表达式6.2 其它化简操作Normal - normal 函数的惰性形式convert - 将一个表达式转换成不同形式radnormal - 标准化一个含有根号数的表达式rationalize - 分母有理化第7章 操作多项式7.0 MAPLE 中的多项式简介7.1 提取coeff - 提取一个多项式的系数coeffs - 提取多元的多项式的所有系数coeftayl - 多元表达式的系数lcoeff, tcoeff - 返回多元多项式的首项和末项系数7.2 多项式约数和根gcd, lcm - 多项式的最大公约数/最小公倍数psqrt, proot - 多项式的平方根和第n次根rem,quo - 多项式的余数/商7.3 操纵多项式convert/horner - 将一个多项式转换成Horner形式collect - 象幂次一样合并系数compoly - 确定一个多项式的可能合并的项数convert/polynom - 将级数转换成多项式形式convert/mathorner - 将多项式转换成Horner矩阵形式convert/ratpoly - 将级数转换成有理多项式sort - 将值的列表或者多项式排序sqrfree - 不含平方项的因数分解函数7.4 多项式运算discrim - 多项式的判别式fixdiv - 计算多项式的固定除数norm - 多项式的标准型resultant - 计算两个多项式的终结式bernoulli - Bernoulli 数和多项式bernstein - 用Bernstein多项式近似一个函数content, primpart - 一个多元的多项式的内容和主部degree, ldegree - 一个多项式的最高次方/最低次方divide - 多项式的精确除法euler - Euler 数和多项式icontent - 多项式的整数部分interp - 多项式的插值prem, sprem - 多项式的pseudo 余数和稀疏pseudo 余数randpoly - 随机多项式生成器spline - 计算自然样条函数第8章 有理表达式8.0 有理表达式简介8.1 操作有理多项式numer,denom - 返回一个表达式的分子/分母frontend - 将一般的表达式处理成一个有理表达式normal - 标准化一个有理表达式convert/parfrac - 转换为部分分数形式convert/rational - 将浮点数转换为接近的有理数ratrecon - 重建有理函数第9章 微积分9.1 取极限Limit, limit - 计算极限limit[dir] - 计算方向极限limit[multi] - 多重方向极限limit[return] - 极限的返回值9.2 连续性测试discont - 寻找一个函数在实数域上的间断点fdiscont - 用数值法寻找函数在实数域上的间断点iscont - 测试在一个区间上的连续性9.3 微分计算D - 微分算子D, diff - 运算符D 和函数diffdiff, Diff - 微分或者偏微分convert/D - 将含导数表达式转换为D运算符表达式convert/diff - 将D(f)(x)表达式转换为diff(f(x),x)的形式implicitdiff - 由一个方程定义一个函数的微分9.4 积分计算Si, Ci … - 三角和双曲积分Dirac, Heaviside - Dirac 函数/Heaviside阶梯函数Ei - 指数积分Elliptic -椭圆积分FresnelC, … - Fresnel 正弦,余弦积分和辅助函数int, Int - 定积分和不定积分LegendreP, … - Legendre 函数及其第一和第二类函数Li - 对数积分student[changevar] - 变量代换dawson - Dawson 积分ellipsoid - 椭球体的表面积evalf(int) - 数值积分intat, Intat - 在一个点上积分求值第10章 微分方程10.1 微分方程分类odeadvisor - ODE-求解分析器DESol - 表示微分方程解的数据结构pdetest - 测试pdsolve 能找到的偏微分方程(PDEs)解10.2 常微分方程求解dsolve - 求解常微方程 (ODE)dsolve - 用给定的初始条件求解ODE 问题dsolve/inttrans - 用积分变换方法求解常微分方程dsolve/numeric - 常微方程数值解dsolve/piecewise - 带分段系数的常微方程求解dsolve - 寻找ODE 问题的级数解dsolve - 求解ODEs 方程组odetest - 从ODE 求解器中测试结果是显式或者隐式类型10.3 偏微分方程求解pdsolve - 寻找偏微分方程 (PDEs) 的解析解第11章 数值计算11.1 MAPLE 中的数值计算环境IEEE 标准和Maple数值计算数据类型特殊值环境变量11.2 算法标准算法复数算法含有0,无穷和未定义数的算法11.3 数据构造器254complex - 复数和复数构造器Float, … - 浮点数及其构造器Fraction - 分数及其的构造器integer - 整数和整数构造器11.4 MATLAB软件包简介11.5 “”区间类型表达式第12章级数12.1 幂级数的阶数Order - 阶数项函数order - 确定级数的截断阶数12.2 常见级数展开series - 一般的级数展开taylor - Taylor 级数展开mtaylor - 多元Taylor级数展开poisson - Poisson级数展开.26812.3 其它级数eulermac - Euler-Maclaurin求和piecewise - 分段连续函数asympt - 渐进展开第13章 特殊函数AiryAi, AiryBi - Airy 波动函数AiryAiZeros, AiryBiZeros - Airy函数的实数零点AngerJ, WeberE - Anger函数和Weber函数BesselI, HankelH1, … - Bessel函数和Hankel函数BesselJZeros, … - Bessel函数实数零点Beta - Beta函数EllipticMolus - 模数函数k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函数GaussAGM - Gauss 算术的几何平均数JacobiAM, ., - Jacobi 振幅函数和椭圆函数JacobiTheta1, JacobiTheta4 - Jacobi theta函数JacobiZeta - Jacobi 的Zeta函数KelvinBer, KelvinBei - Kelvin函数KummerM, - Kummer M函数和U函数LambertW - LambertW函数LerchPhi - 一般的Lerch Phi函数LommelS1, LommelS2 - Lommel函数MeijerG - 一个修正的Meijer G函数Psi - Digamma 和Polygamma函数StruveH, StruveL - Struve函数WeierstrassP - Weierstrass P函数及其导数WhittakerM - Whittaker 函数Zeta - Zeta 函数erf, … - 误差函数,补充的误差函数和虚数误差函数harmonic - 调和函数hypergeom - 广义的超越函数pochhammer - 一般的pochhammer函数polylog - 一般的polylogarithm函数第14章 线性代数14.1 ALGEBRA(代数)中矩阵,矢量和数组14.2 LINALG软件包简介14.3数据结构矩阵matrices(小写)矢量vectors(矢量)convert/matrix - 将数组,列表,Matrix 转换成matrixconvert/vector - 将列表,数组或Vector 转换成矢量vectorlinalg[matrix] - 生成矩阵matrix(小写)linalg[vector] - 生成矢量vector(小写)14.4 惰性函数Det - 惰性行列式运算符Eigenvals - 数值型矩阵的特征值和特征向量Hermite, Smith - 矩阵的Hermite 和Smith 标准型14.5 LinearAlgebra函数Matrix 定义矩阵Add 加/减矩阵Adjoint 伴随矩阵BackwardSubstitute 求解 A . X = B,其中 A 为上三角型行阶梯矩阵BandMatrix 带状矩阵Basis 返回向量空间的一组基SumBasis 返回向量空间直和的一组基IntersectionBasis 返回向量空间交的一组基BezoutMatrix 构造两个多项式的 Bezout 矩阵BidiagonalForm 将矩阵约化为双对角型CharacteristicMatrix 构造特征矩阵CharacteristicPolynomial 构造矩阵的特征多项式CompanionMatrix 构造一个首一(或非首一)多项式或矩阵多项式的友矩阵(束)ConditionNumber 计算矩阵关于某范数的条件数ConstantMatrix 构造常数矩阵ConstantVector 构造常数向量Copy 构造矩阵或向量的一份复制CreatePermutation 将一个 NAG 主元向量转换为一个置换向量或矩阵CrossProct 向量的叉积`&x` 向量的叉积DeleteRow 删除矩阵的行DeleteColumn删除矩阵的列Determinant 行列式Diagonal 返回从矩阵中得到的向量序列DiagonalMatrix 构造(分块)对角矩阵Dimension 行数和列数DotProct 点积BilinearForm 向量的双线性形式EigenConditionNumbers 计算数值特征值制约问题的特征值或特征向量的条件数Eigenvalues 计算矩阵的特征值Eigenvectors 计算矩阵的特征向量Equal 比较两个向量或矩阵是否相等ForwardSubstitute 求解 A . X = B,其中 A 为下三角型行阶梯矩阵FrobeniusForm 将一个方阵约化为 Frobenius 型(有理标准型)GaussianElimination 对矩阵作高斯消元RecedRowEchelonForm 对矩阵作高斯-约当消元GetResultDataType 返回矩阵或向量运算的结果数据类型GetResultShape 返回矩阵或向量运算的结果形状GivensRotationMatrix 构造 Givens 旋转的矩阵GramSchmidt 计算一个正交向量集HankelMatrix 构造一个 Hankel 矩阵HermiteForm 计算一个矩阵的 Hermite 正规型HessenbergForm 将一个方阵约化为上 Hessenberg 型HilbertMatrix 构造广义 Hilbert 矩阵HouseholderMatrix 构造 Householder 反射矩阵IdentityMatrix 构造一个单位矩阵IsDefinite 检验矩阵的正定性,负定性或不定性IsOrthogonal 检验矩阵是否正交IsUnitary 检验矩阵是否为酉矩阵IsSimilar 确定两个矩阵是否相似JordanBlockMatrix 构造约当块矩阵JordanForm 将矩阵约化为约当型KroneckerProct 构造两个矩阵的 Kronecker 张量积LeastSquares 方程的最小二乘解LinearSolve 求解线性方程组 A . x = bLUDecomposition 计算矩阵的 Cholesky,PLU 或 PLU1R 分解Map 将一个程序映射到一个表达式上,对矩阵和向量在原位置上进行处理MatrixAdd 计算两个矩阵的线性组合VectorAdd 计算两个向量的线性组合MatrixExponential 确定一个矩阵 A 的矩阵指数 exp(A)MatrixFunction 确定方阵 A 的函数 F(A)MatrixInverse 计算方阵的逆或矩阵的 Moore-Penrose 伪逆MatrixMatrixMultiply 计算两个矩阵的乘积MatrixVectorMultiply 计算一个矩阵和一个列向量的乘积VectorMatrixMultiply 计算一个行向量和一个矩阵的乘积MatrixPower 矩阵的幂MinimalPolynomial 构造矩阵的最小多项式Minor 计算矩阵的子式Multiply 矩阵相乘Norm 计算矩阵或向量的p-范数MatrixNorm 计算矩阵的p-范数VectorNorm 计算向量的p-范数Normalize 向量正规化NullSpace 计算矩阵的零度零空间OuterProctMatrix 两个向量的外积Permanent 方阵的不变量Pivot 矩阵元素的主元消去法PopovForm Popov 正规型QRDecomposition QR 分解RandomMatrix 构造随机矩阵RandomVector 构造随机向量Rank 计算矩阵的秩Row 返回矩阵的一个行向量序列Column 返回矩阵的一个列向量序列RowOperation 对矩阵作初等行变换ColumnOperation 对矩阵作出等列变换RowSpace 返回矩阵行空间的一组基ColumnSpace 返回矩阵列空间的一组基ScalarMatrix 构造一个单位矩阵的数量倍数ScalarVector 构造一个单位向量的数量倍数ScalarMultiply 矩阵与数的乘积MatrixScalarMultiply 计算矩阵与数的乘积VectorScalarMultiply 计算向量与数的乘积SchurForm 将方阵约化为 Schur 型SingularValues 计算矩阵的奇异值SmithForm 将矩阵约化为 Smith 正规型StronglyConnectedBlocks 计算方阵的强连通块SubMatrix 构造矩阵的子矩阵SubVector 构造向量的子向量SylvesterMatrix 构造两个多项式的 Sylvester 矩阵ToeplitzMatrix 构造 Toeplitz 矩阵Trace 计算方阵的迹Transpose转置矩阵HermitianTranspose 共轭转置矩阵TridiagonalForm 将方阵约化为三对角型UnitVector 构造单位向量VandermondeMatrix 构造一个 Vandermonde 矩阵VectorAngle 计算两个向量的夹角ZeroMatrix 构造一个零矩阵ZeroVector 构造一个零向量Zip 将一个具有两个参数的程序作用到一对矩阵或向量上LinearAlgebra[Generic] 子函数包 [Generic] 子函数包提供作用在场,欧几里得域,积分域和环上的线性代数算法。命令列表和详细信息见帮助系统。LinearAlgebra[Molar] 子函数包 [Molar] 子函数包提供一组工具用于完成在 Z/m 稠密线性代数计算,整数模m。
软件名称:Maple 开发商:Maplesoft Maple : 通用的数学和工程软件,是世界上最值得信赖、最完整的数学软件之一,被高等院校、研究机构和公司广泛应用,用户渗透超过97%的世界主要高校和研究所,超过81%的世界财富五百强企业。 Maple提供世界上最强大的符号计算,无与伦比的数值计算,支持用户界面开发和网络发布,内置丰富的数学求解库,覆盖几乎所有的数学分支,所有的操作都是在一个所见即所得的交互式技术文档环境中完成,完成计算的同时也生成了专业技术文件和演示报告。 Maple不仅仅提供编程工具,更重要的是提供数学知识。Maple是教授、研究员、科学家、工程师、学生们必备的科学计算工具,从简单的数字计算到高度复杂的非线性问题,Maple都可以帮助您快速、高效地解决问题。用户通过Maple产品可以在单一的环境中完成多领域物理系统建模和仿真、符号计算、数值计算、程序设计、技术文件、报告演示、算法开发、外部程序连接等功能,满足各个层次用户的需要,从高中学生到高级研究人员。 Maple 有三个比较特出的技术特征:数学引擎,开放性、操作简单。 数学引擎:Mathematics=Maplesoft !做数学工作时,世界上没有任何其他软件比Maple更完整、更好。 开放性:Maple 的程序可以自动转换为其他语言代码,如Java/C/Fortran/VB/MATLAB,解决了多种开发环境不相容的问题。Maple能够与MATLAB/Simulink, NAG,EXCEl,数据库等工具连接。另外Maple可与CAD系统连接,可通过参数传输完成对CAD模型的数学分析,如统计分析、优化、经验公式计算、公差和单位计算,并自动在CAD系统中完成更新。 通过专业工具箱,Maple可与数值计算软件Matlab共享命令、变量等。 操作简单:Maple人性化的界面让用户只需要按几个键就可以解决大量复杂的计算问题,Maple的文件模式界面可以创建多样化的、专业级的技术文件,并可以自由转换为其他格式的文件,如Latex / Html / Word等。 现已经推出 Maple 12 Professional 版本 一款韩国网游的简称 全称为maplestory 中国大陆的名称为冒险岛,
世界通用的数学和工程软件 Maple是加拿大滑铁卢大学(Waterloo University)研制的一种计算机代数系统。经过近20年的不断发展,数学软件Maple已成为当今世界上最优秀的几个数学软件之一,它以良好的使用环境、强有力的符号计算能力、高精度的数字计算、灵活的图形显示和高效的可编程功能,为越来越多的教师、学生和科研人员所喜爱,并成为他们进行数学处理的工具。可以容易的运用Maple软件解决微积分、解析几何、线性代数、微分方程、计算方法、概率统计等数学分支中的常见的计算问题。 Maple 软件主要由三部分组成:用户界面(Iris),代数运算器(kernel),外部函数库(External library)。用户界面和代数运算器是用C语言写的,只占整个软件的一小部分,当系统启动时,即被装入。Iris负责输入命令和算式的初步处理、显示结果、函数图像的显示等。Kernel负责输入的编译、基本的代数运算,如有理数运算、初等代数运算,还负责内存管理。Maple的大部分数学函数和过程是用Maple自身的语言写成的,存于外部函数库中。当一个函数调用时,在多数情况下,Maple会自动将该函数的过程调入内存,一些不常用的函数才需要用户自己将它们调入。另外有一些特别的函数包也需要用户自己调入,如线性代数包、统计包,这使得Maple在资源的利用上具有很大的优势,只有最有用的东西才留住内存,这是Maple可以在较小内存的计算机上正常运行的原因。 Maple11新特性----先进、直观、功能强大 Maple是任何技术学科的研究人员,教师和同学使用的一个基本工具, Maple 11,我们在 Maple 10的好创意上进行了扩展。增强了精巧的文献界面、数学计算功能和连通性工具的结合使Maple 11成为理想的的教学,学习和研究环境。 下面的提供了Maple 11的许多新特性和改进的细节。 精巧的文献 相比于其他的数学软件,Maple直观的用户界面从根本上消除了the learning curve so common,这个精巧的文献环境提供了丰富的完全交互式文献和跟课本一样专业的观点。许多交互式辅导和参考工具, 加上内置的数学、工程学, 和物理内容保证任何人能以最小的努力变得富有创造力。 自己提供上下文菜单 改进的数字格式化 测绘改进 解决助手 画布 特殊功能和科学常数助手 喜好的颜色 幻灯片模式 微积分和代数的任务模板 手写识别 注释 Inter-document参考 强有了的数学计算能力 Maple 11为数学研究和教学发布了了大量的新的增强的数学功能集锦。集锦包括: 图表理论 真正的根发现者和Groebner引擎 物理学 提高功效 微分几何学 更多数学 微分方程式 连通性: Maple 11和你所有的工具兼容,新的连通特性包括: Excel综合化 图象工具 外部调用和MATLAB连接 附加产品