完美者(wmzhe.com)网站以软件下载为基础,改版后的网站对功能性板块进行扩充,以期能够解决用户在软件使用过程中遇见的所有问题。网站新增了“软件百科”、“锦囊妙技”等频道,可以更好地对用户的软件使用全周期进行更加专业地服务。
一元二次方程软件是可以帮助用户进行计算一元二次方程的辅助工具,使用很简单,操作方便,界面清晰,可供初学者使用。
"锦囊妙技"栏目是聚合全网软件使用的技巧或者软件使用过程中各种问题的解答类文章,栏目设立伊始,小编欢迎各路软件大神朋友们踊跃投稿,在完美者平台分享大家的独门技巧。
本站文章素材来源于网络,大部分文章作者名称佚失,为了更利于用户阅读和使用,根据需要进行了重新排版和部分改编,本站收录文章只是以帮助用户解决实际问题为目的,如有版权问题请联系小编修改或删除,谢谢合作。
软件大小:16.00 KB
(1)x^2-9x+8=0 答案:x1=8 x2=1 (2)x^2+6x-27=0 答案:x1=3 x2=-9 (3)x^2-2x-80=0 答案:x1=-8 x2=10 (4)x^2+10x-200=0 答案:x1=-20 x2=10 (5)x^2-20x+96=0 答案:x1=12 x2=8 (6)x^2+23x+76=0 答案:x1=-19 x2=-4 (7)x^2-25x+154=0 答案:x1=14 x2=11 (8)x^2-12x-108=0 答案:x1=-6 x2=18 (9)x^2+4x-252=0 答案:x1=14 x2=-18 (10)x^2-11x-102=0 答案:x1=17 x2=-6 (11)x^2+15x-54=0 答案:x1=-18 x2=3 (12)x^2+11x+18=0 答案:x1=-2 x2=-9 (13)x^2-9x+20=0 答案:x1=4 x2=5 (14)x^2+19x+90=0 答案:x1=-10 x2=-9 (15)x^2-25x+156=0 答案:x1=13 x2=12 (16)x^2-22x+57=0 答案:x1=3 x2=19 (17)x^2-5x-176=0 答案:x1=16 x2=-11 (18)x^2-26x+133=0 答案:x1=7 x2=19 (19)x^2+10x-11=0 答案:x1=-11 x2=1 (20)x^2-3x-304=0 答案:x1=-16 x2=19 (21)x^2+13x-140=0 答案:x1=7 x2=-20 (22)x^2+13x-48=0 答案:x1=3 x2=-16 (23)x^2+5x-176=0 答案:x1=-16 x2=11 (24)x^2+28x+171=0 答案:x1=-9 x2=-19 (25)x^2+14x+45=0 答案:x1=-9 x2=-5 (26)x^2-9x-136=0 答案:x1=-8 x2=17 (27)x^2-15x-76=0 答案:x1=19 x2=-4 (28)x^2+23x+126=0 答案:x1=-9 x2=-14 (29)x^2+9x-70=0 答案:x1=-14 x2=5 (30)x^2-1x-56=0 答案:x1=8 x2=-7 (31)x^2+7x-60=0 答案:x1=5 x2=-12 (32)x^2+10x-39=0 答案:x1=-13 x2=3 (33)x^2+19x+34=0 答案:x1=-17 x2=-2 (34)x^2-6x-160=0 答案:x1=16 x2=-10 (35)x^2-6x-55=0 答案:x1=11 x2=-5 (36)x^2-7x-144=0 答案:x1=-9 x2=16 (37)x^2+20x+51=0 答案:x1=-3 x2=-17 (38)x^2-9x+14=0 答案:x1=2 x2=7 (39)x^2-29x+208=0 答案:x1=16 x2=13 (40)x^2+19x-20=0 答案:x1=-20 x2=1 (41)x^2-13x-48=0 答案:x1=16 x2=-3 (42)x^2+10x+24=0 答案:x1=-6 x2=-4 (43)x^2+28x+180=0 答案:x1=-10 x2=-18 (44)x^2-8x-209=0 答案:x1=-11 x2=19 (45)x^2+23x+90=0 答案:x1=-18 x2=-5 (46)x^2+7x+6=0 答案:x1=-6 x2=-1 (47)x^2+16x+28=0 答案:x1=-14 x2=-2 (48)x^2+5x-50=0 答案:x1=-10 x2=5 (49)x^2+13x-14=0 答案:x1=1 x2=-14 (50)x^2-23x+102=0 答案:x1=17 x2=6 (51)x^2+5x-176=0 答案:x1=-16 x2=11 (52)x^2-8x-20=0 答案:x1=-2 x2=10 (53)x^2-16x+39=0 答案:x1=3 x2=13 (54)x^2+32x+240=0 答案:x1=-20 x2=-12 (55)x^2+34x+288=0 答案:x1=-18 x2=-16 (56)x^2+22x+105=0 答案:x1=-7 x2=-15 (57)x^2+19x-20=0 答案:x1=-20 x2=1 (58)x^2-7x+6=0 答案:x1=6 x2=1 (59)x^2+4x-221=0 答案:x1=13 x2=-17 (60)x^2+6x-91=0 答案:x1=-13 x2=7 (61)x^2+8x+12=0 答案:x1=-2 x2=-6 (62)x^2+7x-120=0 答案:x1=-15 x2=8 (63)x^2-18x+17=0 答案:x1=17 x2=1 (64)x^2+7x-170=0 答案:x1=-17 x2=10 (65)x^2+6x+8=0 答案:x1=-4 x2=-2 (66)x^2+13x+12=0 答案:x1=-1 x2=-12 (67)x^2+24x+119=0 答案:x1=-7 x2=-17 (68)x^2+11x-42=0 答案:x1=3 x2=-14 (69)x^20x-289=0 答案:x1=17 x2=-17 (70)x^2+13x+30=0 答案:x1=-3 x2=-10 (71)x^2-24x+140=0 答案:x1=14 x2=10 (72)x^2+4x-60=0 答案:x1=-10 x2=6 (73)x^2+27x+170=0 答案:x1=-10 x2=-17 (74)x^2+27x+152=0 答案:x1=-19 x2=-8 (75)x^2-2x-99=0 答案:x1=11 x2=-9 (76)x^2+12x+11=0 答案:x1=-11 x2=-1 (77)x^2+17x+70=0 答案:x1=-10 x2=-7 (78)x^2+20x+19=0 答案:x1=-19 x2=-1 (79)x^2-2x-168=0 答案:x1=-12 x2=14 (80)x^2-13x+30=0 答案:x1=3 x2=10 (81)x^2-10x-119=0 答案:x1=17 x2=-7 (82)x^2+16x-17=0 答案:x1=1 x2=-17 (83)x^2-1x-20=0 答案:x1=5 x2=-4 (84)x^2-2x-288=0 答案:x1=18 x2=-16 (85)x^2-20x+64=0 答案:x1=16 x2=4 (86)x^2+22x+105=0 答案:x1=-7 x2=-15 (87)x^2+13x+12=0 答案:x1=-1 x2=-12 (88)x^2-4x-285=0 答案:x1=19 x2=-15 (89)x^2+26x+133=0 答案:x1=-19 x2=-7 (90)x^2-17x+16=0 答案:x1=1 x2=16 (91)x^2+3x-4=0 答案:x1=1 x2=-4 (92)x^2-14x+48=0 答案:x1=6 x2=8 (93)x^2-12x-133=0 答案:x1=19 x2=-7 (94)x^2+5x+4=0 答案:x1=-1 x2=-4 (95)x^2+6x-91=0 答案:x1=7 x2=-13 (96)x^2+3x-4=0 答案:x1=-4 x2=1 (97)x^2-13x+12=0 答案:x1=12 x2=1 (98)x^2+7x-44=0 答案:x1=-11 x2=4 (99)x^2-6x-7=0 答案:x1=-1 x2=7 (100)x^2-9x-90=0 答案:x1=15 x2=-6 (101)x^2+17x+72=0 答案:x1=-8 x2=-9 (102)x^2+13x-14=0 答案:x1=-14 x2=1 (103)x^2+9x-36=0 答案:x1=-12 x2=3 (104)x^2-9x-90=0 答案:x1=-6 x2=15 (105)x^2+14x+13=0 答案:x1=-1 x2=-13 (106)x^2-16x+63=0 答案:x1=7 x2=9 (107)x^2-15x+44=0 答案:x1=4 x2=11 (108)x^2+2x-168=0 答案:x1=-14 x2=12 (109)x^2-6x-216=0 答案:x1=-12 x2=18 (110)x^2-6x-55=0 答案:x1=11 x2=-5 (111)x^2+18x+32=0 答案:x1=-2 x2=-16
一元二次方程一般有2个解。 只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一元二次方程经过整理都可化成一般形式ax²+bx+c=0(a≠0)。其中ax²叫作二次项,a是二次项系数;bx叫作一次项,b是一次项系数;c叫作常数项。 一元二次方程有且仅有两个根(重根按重数计算)。 扩展资料: 一元二次方程解法: 一、直接开平方法 形如(x+a)^2=b,当b大于或等于0时,x+a=正负根号b,x=-a加减根号b;当b小于0时。方程无实数根。 二、配方法 1.二次项系数化为1 2.移项,左边为二次项和一次项,右边为常数项。 3.配方,两边都加上一次项系数一半的平方,化成(x=a)^2=b的形式。 4.利用直接开平方法求出方程的解。 三、公式法 现将方程整理成:ax^2+bx+c=0的一般形式。再将abc代入公式x=(-b±√(b^2-4ac))/2a,(b^2-4ac大于或等于0)即可。 四、因式分解法 如果一元二次方程ax^2+bx+c=0中等号左边的代数式容易分解,那么优先选用因式分解法。
1、直接开平方法: 直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n≥0)的 方程,其解为x=±根号下n+m . 例1.解方程(1)(3x+1)2=7 (2)9x2-24x+16=11 分析:(1)此方程显然用直接开平方法好做,(2)方程左边是完全平方式(3x-4)2,右边=11>0,所以此方程也可用直接开平方法解。 (1)解:(3x+1)2=7× ∴(3x+1)2=5 ∴3x+1=±(注意不要丢解) ∴x= ∴原方程的解为x1=,x2= (2)解: 9x2-24x+16=11 ∴(3x-4)2=11 ∴3x-4=± ∴x= ∴原方程的解为x1=,x2= 2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c 将二次项系数化为1:x2+x=- 方程两边分别加上一次项系数的一半的平方:x2+x+( )2=- +( )2 方程左边成为一个完全平方式:(x+ )2= 当b^2-4ac≥0时,x+ =± ∴x=(这就是求根公式) 例2.用配方法解方程 3x^2-4x-2=0 (注:X^2是X的平方) 解:将常数项移到方程右边 3x^2-4x=2 将二次项系数化为1:x2-x= 方程两边都加上一次项系数一半的平方:x2-x+( )2= +( )2 配方:(x-)2= 直接开平方得:x-=± ∴x= ∴原方程的解为x1=,x2= . 3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=[-b±(b^2-4ac)^(1/2)]/(2a) , (b^2-4ac≥0)就可得到方程的根。 例3.用公式法解方程 2x2-8x=-5 解:将方程化为一般形式:2x2-8x+5=0 ∴a=2, b=-8, c=5 b^2-4ac=(-8)2-4×2×5=64-40=24>0 ∴x=[(-b±(b^2-4ac)^(1/2)]/(2a) ∴原方程的解为x1=,x2= . 4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。这种解一元二次方程的方法叫做因式分解法。 例4.用因式分解法解下列方程: (1) (x+3)(x-6)=-8 (2) 2x2+3x=0 (3) 6x2+5x-50=0 (选学) (4)x2-2( + )x+4=0 (选学) (1)解:(x+3)(x-6)=-8 化简整理得 x2-3x-10=0 (方程左边为二次三项式,右边为零) (x-5)(x+2)=0 (方程左边分解因式) ∴x-5=0或x+2=0 (转化成两个一元一次方程) ∴x1=5,x2=-2是原方程的解。 (2)解:2x2+3x=0 x(2x+3)=0 (用提公因式法将方程左边分解因式) ∴x=0或2x+3=0 (转化成两个一元一次方程) ∴x1=0,x2=-是原方程的解。 注意:有些同学做这种题目时容易丢掉x=0这个解,应记住一元二次方程有两个解。 (3)解:6x2+5x-50=0 (2x-5)(3x+10)=0 (十字相乘分解因式时要特别注意符号不要出错) ∴2x-5=0或3x+10=0 ∴x1=, x2=- 是原方程的解。 (4)解:x2-2(+ )x+4 =0 (∵4 可分解为2 ·2 ,∴此题可用因式分解法) (x-2)(x-2 )=0 ∴x1=2 ,x2=2是原方程的解。 小结: 一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。 直接开平方法是最基本的方法。 公式法和配方法是最重要的方法。公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。 配方法是推导公式的工具,掌握公式法后就可以直接用公式法解一元二次方程了,所以一般不用配方法 解一元二次方程。但是,配方法在学习其他数学知识时有广泛的应用,是初中要求掌握的三种重要的数学方法之一,一定要掌握好。(三种重要的数学方法:换元法,配方法,待定系数法)。
只有一个未知数 未知数是2次方的